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Scale Bridging for Materials Properties

5/4/2021 |   2Los Alamos National Laboratory

TI
M

E

LENGTH
ps

ns

µs

ms

s

nm µm mm m

Ab-initio 
Methods 

Molecular 
Dynamics

Continuum Methods 

Phase-Field 
Modeling

The goal: predict macroscopic materials 
properties (specifically, Pu alloys) from first 
principles physics.

Breakthrough for understanding materials when  
experiments are difficult or impossible.
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Active Learning for Dataset Generation
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An Active Learning system was developed for the automated exploration of phase 
space. This system builds a training dataset for an Machine Learned interatomic 
potential with little to no human intervention.

Using Query by Committee (a UQ method), we intelligently select configurations to 
augment the ML training set intelligently. 
Smith, J. S.; Nebgen, B.; Mathew, N.; Chen, J.; Lubbers, N.; Burakovsky, L.; Tretiak, S.; Nam, H. A.; Germann, T.; Fensin, S.; 
Barros, K., Automated discovery of a robust interatomic potential for aluminum. Nature Comm. 2021, 12.



Aluminum Shock
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This methodology was used 
to build a ML interatomic 
potential for Al during Sierra 
open.

The potential was used to 
perform a 1.2 M atom shock  
simulation. Forces were 
verified by DFT.



Potentials Developed in ATCC-10: Au, Ag, and Pu
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Au, Ag, and Pu ML potentials developed during ATCC-10 show good agreement with 
Density Functional Theory (DFT) properties. 

Ag-ML potential melting point computed to be ~980 ºC, experimental is 962 ºC (very 
good agreement).

Pu in good agreement with DFT properties, ATCC-11 will further refine with higher 
accuracy methods.



Outlook and Lessons Learned
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• ML potentials represent about a x10,000,000 
speedup over Quantum Mechanical Methods
– ML potential (ANI+LAMMPS) can run on 1280 Sierra 

nodes efficiently. 
• Sierra is an incredibly powerful resource.

– Development of Pu potential is computationally ~100 
times more difficult than development of Au/Ag.  Only 
possible on a computer like Sierra.

– Distributed GPU architecture (Sierra) works extremely 
well for both Active Learning and domain decomposition 
(small regions of space on each GPU node).

• Difficult to estimate time until completed and validated Pu-alloy potential. 
Between end of 2021 to end of 2022.
– Pu requires transfer learning. Collaboration with Gabi Kotliar (Rutgers).

• Smith et al “Approaching coupled cluster accuracy with a general-purpose neural network potential 
through transfer learning” Nat. Comm. 2019, 10, 2903. 

• Future Work
– Incorporating experimental data in ML potential training (ongoing LDRD-DR project building 

capability). 
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